If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+40x=10
We move all terms to the left:
x^2+40x-(10)=0
a = 1; b = 40; c = -10;
Δ = b2-4ac
Δ = 402-4·1·(-10)
Δ = 1640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1640}=\sqrt{4*410}=\sqrt{4}*\sqrt{410}=2\sqrt{410}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{410}}{2*1}=\frac{-40-2\sqrt{410}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{410}}{2*1}=\frac{-40+2\sqrt{410}}{2} $
| -6r=2r+36 | | 6(x-12)=3(x+6) | | 1/3y/17=1/2y-5 | | (x-35)+5x=180 | | (2x-15)+62=180 | | 9m-m+3=-2 | | 5/b=2/b-6 | | 6=4x+1=5x+7-x | | 3x^2+5x=5456 | | −1/2=̶6/18x | | 3^x+3^2-x+6=0 | | j+(-14)=11 | | 3×x=117 | | 8k-5=0 | | 1/2(2x+1)=1/4(8x+4) | | 3x+4-5=15 | | (3x+5)+(5x-21)=0 | | 15x-21+3x=15x+4-1 | | d+19=-1 | | 1/4(8x-1)=2x-1 | | 3x2-14x-7=0 | | 8n+5n-4=416 | | 4m²-10m=0 | | .2(3x^2+4)=19x | | 15-x)-(8+4)=3 | | 8(x−2)=3(x+5)−2(2x+2) | | 7+y/3=6+2y/2 | | x2+1=1 | | S-1.8x=61 | | 16u+13+3=6u+13 | | 5(2-b)=6-7(7b+6) | | 6g+10=-10+10g |